32 research outputs found

    A Virtual Network PaaS for 3GPP 4G and Beyond Core Network Services

    Full text link
    Cloud computing and Network Function Virtualization (NFV) are emerging as key technologies to overcome the challenges facing 4G and beyond mobile systems. Over the last few years, Platform-as-a-Service (PaaS) has gained momentum and has become more widely adopted throughout IT enterprises. It simplifies the applications provisioning and accelerates time-to-market while lowering costs. Telco can leverage the same model to provision the 4G and beyond core network services using NFV technology. However, many challenges have to be addressed, mainly due to the specificities of network services. This paper proposes an architecture for a Virtual Network Platform-as-a-Service (VNPaaS) to provision 3GPP 4G and beyond core network services in a distributed environment. As an illustrative use case, the proposed architecture is employed to provision the 3GPP Home Subscriber Server (HSS) as-a-Service (HSSaaS). The HSSaaS is built from Virtualized Network Functions (VNFs) resulting from a novel decomposition of HSS. A prototype is implemented and early measurements are made.Comment: 7 pages, 6 figures, 2 tables, 5th IEEE International Conference on Cloud Networking (IEEE CloudNet 2016

    A Cloud Platform-as-a-Service for Multimedia Conferencing Service Provisioning

    Full text link
    Multimedia conferencing is the real-time exchange of multimedia content between multiple parties. It is the basis of a wide range of applications (e.g., multimedia multiplayer game). Cloud-based provisioning of the conferencing services on which these applications rely will bring benefits, such as easy service provisioning and elastic scalability. However, it remains a big challenge. This paper proposes a PaaS for conferencing service provisioning. The proposed PaaS is based on a business model from the state of the art. It relies on conferencing IaaSs that, instead of VMs, offer conferencing substrates (e.g., dial-in signaling, video mixer and audio mixer). The PaaS enables composition of new conferences from substrates on the fly. This has been prototyped in this paper and, in order to evaluate it, a conferencing IaaS is also implemented. Performance measurements are also made.Comment: 6 pages, 6 figures, IEEE ISCC 201

    A Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

    Get PDF
    Multimedia conferencing is the real-time exchange of multimedia content between multiple parties. It is the basis of several interactive multiuser applications, such as distance learning and multimedia multiplayer online games. The cloud-based provisioning of the conferencing services on which these applications rely on can have several benefits, including the easy provisioning of new applications, efficient use of resources, and elastic scalability. This paper proposes a holistic cloud-based architecture for conferencing service provisioning, which covers both the infrastructure and platform layers of the cloud. The proposed infrastructure layer offers conferencing substrates-as-a-service (e.g., dial-in signaling, video mixing, and audio mixing), instead of virtual machines or containers. The platform layer abstracts the details of the conferencing concepts and offers a high-level interface to simplify conference service provisioning for a wide range of service and application providers (experts versus non-experts). It also enables the on-the-fly scaling of the running conferences while guaranteeing the required quality of service, enables substrates composition to create new conferencing services, and eases the reuse of conferencing services in building new applications. The presented architecture is supported by a proof-of-concept prototype and performance measurements. The latter provides the analysis of resource allocation efficiency and response time, as well as the scalability of the system under suboptimal and over-provisioned conditions. It also provides recommendations for service providers regarding the best alternatives for provisioning their service

    IoT end-user applications provisioning in the cloud: State of the art

    Get PDF
    © 2016 IEEE. Internet of Things (IoT) is expected to enable a myriad of end-user applications by interconnecting physical objects. Cloud computing is a promising paradigm for provisioning IoT end-user applications in a cost-efficient manner. IoT end-user applications are provisioned in cloud settings using PaaS and offered as SaaS. This paper focuses on the PaaS aspects of IoT end-user applications provisioning. It critically reviews the state of the art. The critical review discusses the PaaS on the whole spectrum of IoT verticals and also the PaaS dealing with specific IoT verticals

    A comprehensive survey on Fog Computing: State-of-the-art and research challenges

    Get PDF
    Cloud computing with its three key facets (i.e., Infrastructure-as-a-Service, Platform-as-a-Service, and Softwareas- a-Service) and its inherent advantages (e.g., elasticity and scalability) still faces several challenges. The distance between the cloud and the end devices might be an issue for latencysensitive applications such as disaster management and content delivery applications. Service level agreements (SLAs) may also impose processing at locations where the cloud provider does not have data centers. Fog computing is a novel paradigm to address such issues. It enables provisioning resources and services outside the cloud, at the edge of the network, closer to end devices, or eventually, at locations stipulated by SLAs. Fog computing is not a substitute for cloud computing but a powerful complement. It enables processing at the edge while still offering the possibility to interact with the cloud. This paper presents a comprehensive survey on fog computing. It critically reviews the state of the art in the light of a concise set of evaluation criteria. We cover both the architectures and the algorithms that make fog systems. Challenges and research directions are also introduced. In addition, the lessons learned are reviewed and the prospects are discussed in terms of the key role fog is likely to play in emerging technologies such as tactile Internet

    DĂ©ploiement des applications Ă  base de services dans le cloud

    No full text
    Cloud Computing is a new supplement, consumption, and delivery model for IT services based on Internet protocols. It is increasingly used for hosting and executing applications in general and service-based applications in particular. Service-based applications are described according to Service Oriented Architecture (SOA) and consist of assembling a set of elementary and heterogeneous services using appropriate service composition specifications like Service Component Architecture (SCA) or Business Process Execution Language (BPEL). Provision an application in the Cloud consists of allocates its required resources from a Cloud provider, upload source codes over their resources before starting the application. However, existing Cloud solutions are limited to static programming frameworks and runtimes. They cannot always meet with the application requirements especially when their components are heterogeneous as service-based applications. To address these issues, application provisioning mechanisms in the Cloud must be reconsidered. The deployment mechanisms must be flexible enough to support the strong application components heterogeneity and requires no modification and/or adaptation on the Cloud provider side. They also should support automatic provisioning procedures. If the application to deploy is mono-block (e.g. one-tier applications), the provisioning is performed automatically and in a unified way whatever is the target Cloud provider through generic operations. If the application is service-based, appropriate features must be provided to developers in order to create themselves dynamically the required resources before the deployment in the target provider using generic operations. In this work, we propose an approach (called SPD) to provision service-based applications in the Cloud. The SPD approach consists of 3 steps: (1) Slicing the service-based application into a set of elementary and autonomous services, (2) Packaging the services in micro-containers and (3) Deploying the micro-containers in the Cloud. Slicing the applications is carried out by formal algorithms that we have defined. For the slicing, proofs of preservation of application semantics are established. For the packaging, we performed prototype of service containers which provide the minimal functionalities to manage hosted services life cycle. For the deployment, both cases are treated i.e. deployment in Cloud infrastructure (IaaS) and deployment in Cloud platforms (PaaS). To automate the deployment, we defined: (i) a unified description model based on the Open Cloud Computing Interface (OCCI) standard that allows the representation of applications and its required resources independently of the targeted PaaS and (ii) a generic PaaS application provisioning and management API (called COAPS API) that implements this modelLe Cloud Computing ou "informatique en nuage" est un nouveau paradigme émergeant pour l’exploitation des services informatiques distribuées à large échelle s’exécutant à des emplacements géographiques répartis. Ce paradigme est de plus en plus utilisé pour le déploiement et l’exécution des applications en général et des applications à base de services en particulier. Les applications à base de services sont décrites à l’aide du standard Service Component Architecture (SOA) et consistent à inter-lier un ensemble de services élémentaires et hétérogènes en utilisant des spécifications de composition de services appropriées telles que Service Component Architecture (SCA) ou encore Business Process Execution Language (BPEL). Provisionner une application dans le Cloud consiste à : (1) allouer les ressources dont elle a besoin pour s’exécuter, (2) déployer ses sources sur les ressources allouées et (3) démarrer l’application. Cependant, les solutions Cloud existantes sont limitées en termes de plateformes d’exécution. Ils ne peuvent pas toujours satisfaire la forte hétérogénéité des composants des applications à base de services. Pour remédier à ces problèmes, les mécanismes de provisioning des applications dans le Cloud doivent être reconsidérés. Ces mécanismes doivent être assez flexibles pour supporter la forte hétérogénéité des composants sans imposer de modifications et/ou d’adaptations du côté du fournisseur Cloud. Elles doivent également permettre le déploiement automatique des composants dans le Cloud. Si l’application à déployer est mono-composant, le déploiement est fait automatiquement et de la même manière, et ce quelque soit le fournisseur Cloud choisi. Si l’application est à base de services hétérogènes, des fonctionnalités appropriées doivent être mises à la disposition des développeurs pour qu’ils puissent définir et créer les ressources nécessaires aux composants avant de déployer l’application. Dans ce travail, nous proposons une approche appelée SPD permettant le provisioning des applications à base de services dans le Cloud. L’approche SPD est constituée de 3 étapes : (1) découper des applications à base de services en un ensemble de services élémentaires et autonomes, (2) encapsuler les services dans des micro-conteneurs spécifiques et (3) déployer les micro-conteneurs dans le Cloud. Pour le découpage, nous avons élaboré un ensemble d’algorithmes formels assurant la préservation de la sémantique des applications une fois découpées. Pour l’encapsulation, nous avons réalisé des prototypes de conteneurs de services permettant l’hébergement et l’exécution des services avec seulement le minimum des fonctionnalités nécessaires. Pour le déploiement, deux cas sont traités i.e. déploiement sur une infrastructure Cloud (IaaS) et déploiement sur une plateforme Cloud (PaaS). Pour automatiser le processus de déploiement, nous avons défini : (i) un modèle de description des ressources unifié basé sur le standard Open Cloud Computing Interface (OCCI) permettant de décrire l’application et ses ressources d’une manière générique quelque soit la plateforme de déploiement cible et (ii) une API appelée COAPS implémentant ce modèle et permettant de l’approvisionnement et la gestion des applications en utilisant des opérations génériques quelque soit la plateforme cibl

    An OCCI compliant model for PaaS resources description and provisioning

    No full text
    International audienceThe proliferation of Cloud Computing platforms has led to the emergence of a large number of heterogeneous platform resources, services, application programming interfaces and supported frameworks and technologies. On one hand, supported frameworks vary from one Platform-as-a-Service (PaaS) to another depending on their implementations and capacities. On the other hand, each PaaS provides a specific and proprietary scenario to provision adequate resources and to deploy applications. In this paper, we propose a new PaaS-independent approach to provision in a unified way, appropriate PaaS resources for applications deployment in Cloud platforms. Our approach aims at addressing vendor lock-in restrictions and applications portability issues in existing Cloud platforms. To that end, we define a unified description model based on the Open Cloud Computing Interface (OCCI) core model that allows describing and managing an abstract Cloud resource. Our defined model consists of two main parts: (1) an OCCI platform extension which describes PaaS resources that can be provisioned by a PaaS to set-up an appropriate environment and (2) an OCCI application extension which describes application resources to deploy an application in this environment. We show the feasibility of our approach with an implementation and a use case of a realistic deployment scenario in Cloud Foundry Paa

    Deployment of service-based processes in the cloud using Petri net decomposition

    No full text
    International audienceCloud Computing is a new distributed computing paradigm that consist in provisioning of infrastructure, software and platform resources as services. Platform services are limited to proprietary or specific programming frameworks and APIs. This issue is not adequate for the deployment of service-based processes which are likely to be composed of a diverse and heterogeneous set of services. In this paper, we propose a new approach to provision appropriate platform resources in order to deploy service-based processes in existing Cloud platforms. Our approach consists in slicing a given process to deploy into a set of elementary services through a Petri net decomposition approach. Source codes of obtained services are generated. After that, the services are packaged in our already developed service micro-containers and deployed in any target PaaS. For the slicing, we defined algorithms to slice their correspondent Petri net into a set of dependent WF-nets and to determine the orchestration to follow for their execution. We also provided the proof of preservation of initial business process semantics when executing the WF-nets. To illustrate and show the feasibility of our proposition, we provide a realistic use case scenario, i.e. Shop process deployment in Cloud Foundry Paa
    corecore